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Instantons in Spherical Model Thermodynamics 
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The instanton thermodynamics of a spherical model analogous to the soliton 
thermodynamics of one-dimensional sine-Gordon and q~4-models is constructed. 
Decomposition of the system phase volume integral into a sum of contributions 
corresponding to the thermal fluctuations above the basic and instanton vacua 
is obtained and all the components of this sum are found. It appears that 
fluctuations above instanton vacua are Gaussian at all temperature. It is shown 
that the phase transition temperature in the spherical model can be found from 
the Kosterlitz-Thouless criterion: in the high-temperature phase the instanton 
configurations become thermodynamically favorable. The obtained results are 
exact and are naturally formulated in terms of singularity theory. 

KEY WORDS; Spherical model; phase transition; instanton; vanishing cycle; 
monodromy group; singularity theory. 

INTRODUCTION 

As shown by Berezinski i  ~1~ and  Koster l i tz  and  Thouless,  ~2'3) the mechanism 
of phase  t rans i t ion  in a system of  two-d imens iona l  ro t a to r s  on the plane is 
assoc ia ted  with the appea rance  of vort ices:  the appea rance  of  a vor tex  is 
t h e r m o d y n a m i c a l l y  favorable  when the t empera tu re  is above  Tc.  In one- 
d imens iona l  mode l s  ( s ine -Gordon ,  ~o 4) the k ink  is an ana log  of a vortex.  In  
bo th  cases we are  deal ing with i n s t a n t o n s - - t r a n s l a t i o n a l l y  non inva r i an t  
so lu t ions  of  the fol lowing equa t ion :  

6H/&ol~o=~,k=O (1) 

where H is the Hami l t on i an ,  ~p is the o rde r  pa ramete r ,  and  the subscr ip t  k 
enumera tes  so lu t ions  of (1) in the o rde r  of  increas ing energy. I t  is well 
k n o w n  tha t  the zero t empera tu re  of  a phase  t rans i t ion  in one-d imens iona l  
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systems is a result of the finite energy of the kink. Moreover, the critical 
behavior for T--* 0 is associated with the presence of kinks. (4'5) 

It is widely accepted that the increasing role of instanton configura- 
tions when the temperature approaches T c is a sufficiently general result. 
In this connection we can mention the dislocation theory of melting (2'6'7) 
and the "cluster picture" of a displacive phase transition (8'9) in two- and 
three-dimensional systems. However, these approaches have been developed 
on the phenomenological level and only qualitatively for d>  2. The main 
difficulty here is, on the one hand, the enormous complexity of the non- 
linear problem of the phase transition, and, on the other hand, the absence 
of adequate mathematical language, a firm analytic foundation which 
would permit us to formulate accurately the basic concepts (clusters, etc.) 
and to obtain concrete and positive results. We believe that the Picard- 
Lefschetz theory (1~ represents such a language. We shall demonstrate its 
usefulness in a phase transition problem, using a spherical model modifica- 
tion as an example. 

Several structures of the singularity theory can be associated with 
instantons. The set of critical values Ek = H(q~k) of the Hamiltonian is an 
elementary one. At these positions the phase volume integral I(E) and the 
entropy S(E) defined by 

I(E) = expES(E)] = f D(p 6 [H(~o) -- E] (2) 

have singularities (van Hove theorem). The next structures, invariant 
vanishing cycles, a monodromy group, and others, are related to the 
properties of the analytic continuation of the integral I(E) in the complex 
plane. They characterize the topological properties of the Hamiltonian level 
surface and allow one to define correctly the contributions of Ik(E) to the 
integral (2), which correspond to fluctuations above the instanton vacua 
Ok. The singularity theory permits us to associate such contributions not 
only with stable solutions of Eq. (1), the Hamiltonian minima, but also 
with unstable ones, the saddle points. Thus, all instantons are unstable in 
the spherical model, but they are crucial for its thermodynamics. It appears 
that in this model the fluctuations above the k-instanton vacuum are 
organized very simply: they have a Gaussian character, and the associated 
phase volume is given by 

Ik(E) = Ak(E - Ek) (N- 3)/2 (3) 

It is of interest to note that the coefficient A k and the phase volume Ik(E ) 
are purely imaginary. This unexpected result is connected with the instan- 
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ton instability. But, in agreement with the Kosterlitz-Thouless concept, 
these instanton configurations bring one to the phase transition. They 
become thermodynamically favorable in the high-temperature phase. 

The paper is organized as follows. In Section 1 we describe how the 
main statements of instanton phenomenology can be formulated in terms 
of the Picard-Lefschetz theory. In Section 2 a spherical model modification 
is described and its critical points are found. In Section 3 a monodromy 
group is found and an expansion of the "real" cycle with respect to the 
basis of vanishing cycles is obtained. It generates a decomposition of the 
phase volume (2) into a sum of integrals, which correspond to the basic 
state and instanton contributions. Evaluation of these integrals is 
performed in Section 4. The results obtained are used in Section 5, where it 
is shown that the Kosterlitz-Thouless criterion gives a correct energy value 
of the spherical model phase transition. In Appendices A and B all 
degenerate singularities of the spherical model Hamiltonian are described. 
In Appendix C a monodromy group of the Toda-chain Hamiltonian is 
presented for comparison. 

1. S T R U C T U R E S  OF THE P I C A R D - L E F S C H E T Z  THEORY 
A N D  I N S T A N T O N  PHYSICS 

In this section it is shown how the concepts of singularity theory 
appear in instanton physics. We restrict ourselves to a heuristic presenta- 
tion and do not attempt exact statements, which can be found in ref. (10). 

The following notation is often used for the integral (2): 

f Dq~ 6 [H(cp) -- E] - f,~R co/dH (4) 

Here co is the differential N-form, whose dimension N is equal to the 
number of degrees of freedom 

co=d~o 1 ^ d @  ^ . . .  ^ d e "  

co/dH is the so-called Gelfand-Leray ( N -  1)-form based on the form co 
and the function H(~o), and AR is the ( N -  1)-cycle on the ( N -  l)-dimen- 
sional level surface of energy E, coinciding with this surface. 

The notation on the right-hand side of (4) is convenient for continua- 
tion to the complex space. For this purpose one has to consider variables 
(#1, ~p2,..., r E as complex and H(cp) as an analytical function of N com- 
plex variables. In this case the dimension (real) of the H 1[El level surface 
is doubled, while the dimension of the cycle A R and the form co/dH remain 
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the same. Thus, there is "much free space" on the surface H-l IE]  and a 
set of complex cycles is placed on it apart from the real cycle d g. 

Complexification greatly simplifies the classification of the level 
surface. All regular (i.e., without extremal points) constant-energy surfaces 
are similar. The topology of the critical surface H-I[E~I depends on the 
type of critical points on it. If H(~0) is a Morse function, the deformation 
of the regular surface H- l IE]  into the singular one H-I[Ek] leads to 
degeneration into a point of one cycle Ak. For the Morse function 

N 

H =  Z (q~)2 (5) 

with a single critical point ~0 = 0, such a cycle on a regular surface H -  1 [E],  
E r 0, is represented by the ( N -  1)-dimensional sphere 

N 

(~0~) 2 = E, arg ~o" = (arg E)/2 (6) 
~ t = ]  

For the function H = x 2 -  y2 the vanishing cycle on H I[E]  with E > 0 is 

x 2 _ y2 = E, Im x = Re y = 0 (7) 

If E--* 0, spheres (6) and (7) are reduced to a point. 
Such "vanishing" cycles form a basis on the regular level surface of the 

Morse function. The real cycle A n can be decomposed with respect to this 
basis, 

A,~ = Y~ C~-3k (8) 
k 

with integer Ck. 
We may introduce the basic integrals along the vanishing cycles on the 

surface H -  1 [E]  as 

I(E, 3k) = f ~ k cn/dH (9) 

which are analogous to (2). Their analytical properties are established by 
singularity theory: they are analytical on the complex E plane with 
branching at Ek and their branching is completely described by the 
monodromy group. ~1~ The decomposition (8) leads naturally to the 
decomposition of the phase volume (2), 

I(E) - I(E, 3R) = ~ Ck  I(E, 3k) (10) 
k 
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The basic and instanton states are the critical points of the 
Hamiltonian. Relation (10) is the exact formulation of the statement about 
the decomposability of the system phase volume into the contributions of 
"vicinities of the basic state and instanton configurations." It appears, 
however, that these contributions I (E,  Ak)  can be complex and non-single- 
valued function on E and the critical values are their branching points. 

We should emphasize the following. The Picard-Lefschetz theory 
concerns functions with isolated critical points. As a rule, the instanton 
solutions do not have this property. Indeed, the Hamiltonian usually is 
invariant under some continuous symmetry, for instance, translations. Its 
action on an instanton solution leads to a family of analogous solutions. 
Therefore, it is not the critical points, but the critical lines or surfaces with 
dimension not larger than the dimension of the symmetry group that 
conform to the instantons. This situation cannot be described by the 
Picard-Lefschetz theory. (1~ But it is clear how to modify its basic concepts. 

The initial real cycle is invariant under the Hamiltonian symmetry 
group transformations. Therefore, when constructing the basis, we ought to 
take into account only the invariant vanishing cycles. The action of the 
monodromy group also must be limited to the subspace of invariant cycles 
(it is obvious that monodromy transformations do not remove the cycle 
from this subspace). 

The symmetry of the spherical model leads to two types of degenerate 
singularities described in Appendices A and B. 

2. T H E  S P H E R I C A L  M O D E L  A N D  ITS C R I T I C A L  P O I N T S  

The spherical model was proposed for the description of a 
ferromagnetic phase transition by Kac in 1947. Its exact solution was 
obtained in 1952 by Berlin and Kac (m and now the model has been 
studied in detail. "2) In this and further sections we, without concerning the 
well-known results obtained in the spherical model, shall be interested in 
its instantons and the singularity theory structures associated with them. 

The starting point is the following modification of the model: 

H(q~) = ~ [a~_~ + 2c ~ld (~0J + ea -- rpJ)2] 

+ 8 ~ ( ~  q92) 2 (11) 

where ~o i + Le~ = ~~ a < 0, b > 0, c > 0. Here j = (Jl ,..., Ja) is an integer vector 
e d of the d-dimensional hypercubic lattice, the vectors { ~}~= 1 form an 

822/66/3-4-I0 
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orthonormal basis, and q)i is a real, continuous order parameter (magnetic 
moment of the j site). Periodic boundary conditions are supposed, and the 
summation is over the N sites of the lattice. 

After Fourier transformation, we obtain 

H(~p) = ~ f2Pq~;CP-P + ~ ~Op(p_p (12) 

P p 

where ~0p = N -1/2 Y'q q0j exp(--ipj),  p = (2~/L)(ll,...,la) is the quasimomen- 
turn, and ~?p = a + c ~2~= 1 [exp( ip%)-  1[ 2 are frequencies. 

Frequencies which correspond to opposite momenta p and - p  are, or 
course, equal to each other. On the other hand, some nonopposite 
momenta have equal frequencies, too. For instance, f 2 p = O r  for 
p = (2rci/L, 0,...), p ' =  (0, 2r~i/L, 0,...). Such coincidences we shall consider as 
occasional and remove them by small shift of Dp: f2p~f2p+fg2p ,  where 
M2p = 60_p .  So from ~p = Op, it follows that p = +_p'. 

After the Hamiltonian complexification, the moments q~i become 
complex and the complex variables Cpp and q~ p become independent. 

By differentiation of (12) with respect to ~o _p we arrive at the equation 

g-2P+b2 2N j q ) ,=O (13) \ p' 

defining the critical points. Let us enumerate them. 

1. The Morse point cp + = 0 corresponding to the paramagnetic phase 
with the critical value E+ --0. 

2. Two nondegenerate "ferromagnetic" points q~l and (p z ,  

(q91,2)p={;(-ZNf2o/b) 1/2 (p=O)(pr (14) 

with the critical value 

E_  - C2~N (15) 
2b 

3. Instanton solutions ~0 p, where p ~ O, 

(~oP).,(q,.)_.,= {Of2PN/b (p'= +p) 
(16) (p' ~ _+p) 

or, in the coordinate representation, 

(~0P)j = ( - - 4 ~ p / b )  1/2 cos(pj + ~) (17) 



Instantons in Spherical Model Thermodynamics 833 

w h e r e ,  is an arbitrary parameter describing the instanton translation. The 
corresponding energies are equal to 

_ f 2 ~ N  
Ep - 2b (18) 

The critical values in the E plane are shown in Fig. 1 for a < 0 and 
a > 0. The ordering of the instanton energies corresponds to increasing 
frequencies s < O1 < -.. < Ok < ~2~+ ~ < .. -. For  clarity, the energies are 
removed from the real axis, which corresponds to the shift of a: a ~ a - i0. 

It is useful to enumerate the Hamiltonian critical points in the real 
subspace Im ~o =0.  For a < 0 it is doubly degenerate basic state ~o~ 2, a 
"paramagnetic" point ~o + = 0, and a set of M instanton solutions corre- 
sponding to the negative frequencies f2p. The energies of these instanton 
solutions are removed into the lower half-plane in Fig. la. Let us note that 
the minima are the ~0 ~2 points only and all the rest of the extrema are 
saddle points. 

As mentioned in the previous section, certain types of degenerate 
singularities become stable if the Hamiltonian is invariant under some 
group of transformations. Moreover, the symmetry group defines com- 
pletely the set of nonequivalent stable singularities which can have such a 
Hamiltonian. (13~ So, in analyzing the local structures of some degenerate 
singularity of H(q)) (for instance, the topology of the invariant vanishing 
cycle), we can do this on the equivalent singularity of some table function 
with symmetry properties that are the same as those of the initial 
Hamiltonian. 

In our case the Hamiltonian (12) is invariant with respect to transfor- 
mations 

~Oo --* -~0 o (19a) 

(pp --+ ~0p exp(i~), qO p--+ qO p exp(-- i~) (19b) 

The first degeneracy is the coincidence of the energies of two "ferro- 
magnetic vacua" q) l ,  (p2_ resulting from the Z2 Hamiltonian symmetry 
(19a). An equivalent singularity is shown in the Z2-invariant table function 
from Appendix A. The Sl-symmetry (19b) of the Hamiltonian (12) leads to 

Fig. l. 

E~ E~ e~ & 4 ~ E 

E E1 E. i 

I ! 
(a) (b) 

Critical values of the spherical model (12) for (a) a < 0 and (b) a > 0. 
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the stability of the nonisolated singularity (16): critical points fill the 
complex curve (16). The Sl-invariant table function from Appendix B has 
an equivalent singularity in the surface energy E~. 

3. I N V A R I A N T  V A N I S H I N G  CYCLES A N D  THE 
M O N O D R O M Y  G R O U P  

In this section, the bases of invariant [-with respect to the symmetry 
(19)] vanishing cycles are constructed on a regular surface H - I [ E ] ,  
E > 0  for the Hamiltonian (12) in the cases a > 0  and a < 0  and the 
corresponding representations of the monodromy group are obtained. 

An invariant vanishing cycle on the regular surface H - I [ -E ]  
corresponds to every critical value. An ordinary ( N - 1 ) - s p h e r e  cycle 
corresponds to the Morse point E+.  On the surface H l I E  ] the cycle 
A_ vanishes--we have two nonintersecting spheres (see Appendix A). On 
the surface H - I [ E k ]  the cycle Ak with S N - 2 x  S 1 topology degenerates 
into a circle (16) (see Appendix B). 

Two systems of nonintersecting arcs in the E plane are shown in 
Fig. 2a and 2b; Fig. 2a refers to the case a < 0, Fig. 2b corresponds to the 
case a > 0 .  Representations of the monodromy group corresponding to 
Fig. 2a and 2b are the same and they are described in N = 3(mod 4) by the 
following relations2: 

h~_(A ) = - 3  , 

h~+(A ) = A  - 2 A + ,  

h ~ k ( A + ) = A + - A k ,  

h 7 ( A + ) = A + - A  

h~+(A + )= - A  + 

h~k(A )= A_ - 2A k 
(20) 

Fig. 2. 

sponding to the curve 7: h~( A ) ~ A (1). 

I 

(a) (b) 

Constructing the basis of invariant vanishing cycles for the spherical model for 
(a) a<0 and (b) a>0. 

h./(Ak)= Ak 

2 For a cycle A which lies on the level surface H-lIE], the homotopy A(t) along the regular 
curve 7 in the E plane {7: [0, 1] ~C, ?(0)=,;(1)=E, ?(t) CE~} maps A onto the starting 
surface (the cycle A(t) lies o n  H-tiff(t)]). The resulting cycle A(1) may differ from the initial 
one A(O)-A. Thus, one could define an action of the monodromy operator h~ corre- 
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where ~ is an arbitrary curve with endpoints coinciding at E, and 7~ is an 
elementary loop 3 associated with the arc u~. Let us note the trivial action 
of the monodromy group on the instanton vanishing cycles Ak. 

When a < 0 it is useful to have a decomposition of the A + (M) cycle 
(M is the number  of real instanton solutions ~ok) lying on the H - I [ E ]  

surface with possitive E and vanishing at the surface H 110] in with real 
E decreasing to zero. It can be easily obtained using (20) that 

M 

A + ( M ) = h ~ u  ~ . . . . .  h ~ I . h , e l ( A + ) = A + - A  - ~ A k (21) 
k = l  

The monodromy group is evaluated as follows. Let us observe the 
movement  of critical values in the E plane upon varying a, 

a(t )  = a o - i6 - t (22) 

where a o > 0, t 1> 0, 0 < 6 ,~ 1. The point E+ = 0 is immovable, and all the 
rest move in the neighborhood of the half straight line Im E = 0, Re E < 0. 
They shift to the right, go around zero in the clockwise sense, then move 
back to the left. 4 In the process of moving, every two critical values become 
close to each other (they coincide when 6 = 0) once. The analysis of the 
appearing degeneracies enables us to reconstruct the whole monodromy 
group. Let us consider this procedure in more detail. In converting a into 
zero, the E and E+ critical values merge and the corresponding critical 
points ~o~, q)2_, and ~o+ merge, too. For  sufficiently small a and E, 
vanishing cycles A and 3 + can be located in the vicinity of the origin, 
which enables us to adopt  the following approximation: 

a~o 2 ' bq~ 4 f2pq~pq~_p (23) 
H ( p )  = ~ - -  + ~ -  + • 2 

p • 0  

and to obtain the first four relations in (20), using the results (A.2). 
The following degeneracies---coincidence of the critical values E_  and 

E l - - t a k e s  place when a = al .  It is not accompanied by a merging of the 
corresponding critical points ~o1_ '2 and ~ol on the surface of the E1 = E 
level. Thus, on the surface H ~[E] neighboring H - I [ E 1 ]  and for a values 
close to a~, the cycles A 1 and A_ are far apart  and therefore do not 
"interact" with each other (see Fig. 3a), 

h ~ _ ( 3 , ) = A , ,  h~,(A ) = A _  (24) 

3An elementary loop y, which corresponds to arc u= is the regular loop (with initial and 
terminal po;nts coinciding at E) lying in the vicinity of u= and traversing around the critical 
value E= in the counterclockwise sense. In Fig. 7a the elementary loop 711 corresponds to the 
arc u~. 

4 Hence, in particular, the equality of two given monodromy group representations yields: 
deformation (22) continunously transforms Fig. 2b into Fig. 2a. 
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By transforming them along the arc v in the lower half-plane on the surface 
of positive energy E, we observe that relations (24) remain valid and for 
the cycles defined by arcs ill, u_ in Fig. 3b. 

A further decrease of the parameter a leads to a nontrivial degeneracy 
in the conversion into zero of s (and hence ~01 and El). For small E, and 
O1 the invariant cycles A1 and A +(0) (see Fig. 3b) again can be located in 
the vicinity of zero, which makes the following approximation sufficient: 

b g21'q)P q~ P (25) 

P ~ P l  

For this Hamiltonian a monodromy group in the basis defined by arcs 
u+(0), ul in Fig. 3b is described by relations (B.5) of Appendix B. After 
some algebra, using (A.2) and the identity (see Fig. 3b) 

we obtain from (24) and (B.5) all the relations in (20) containing the A, 
cycle only (without the rest of the instanton cycles). 

By moving a to the left along the real axis and repeating the given 
analysis for the A2, A 3 , . . . , 3  k . . . .  cycles, we obtain the whole monodromy 
group (20). 

Now let us find the representation of the "real" cycle A ~ as a linear 
combination of vanishing cycles. The continuous dependence on energy of 
the real phase volume (2) provides the following decomposition: 

AR= 

~0 (E<E_) 

3 (E_ < E < E 1 )  

A + C, A 1 (E 1 < E < E2) 

M 

(E>0) 
k = l  

(26) 

I 

[ 

(a) (b) 

Fig. B. Cycles z l  and A1 do not interact. 
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where the coefficients Ck and C+ are integer. Similarly, for a > 0 we obtain, 
using the basis shown in Fig. 2b, 

0 (E<O)  
AR= A+ ( E > 0 )  

On the other hand, let us follow the transformation of a real cycle Ae on 
the surface of a fixed positive energy E when a changes along the real axis 
from a positive value ao to a negative value a 1 . Note that the surfaces 
H-l IE]  which correspond to the points from the vicinity of the segment 
(ao, al)  are all regular. Thus, an arc joining ao with al can be slightly 
shifted into the Im a < 0 half-plane and one may use relation (21). As a 
result, we obtain that the coefficients Ck and C+ are all equal to unity: 

M 

ARla<O,E>O=A+(M)+A + ~ A k (27) 
k = l  

4. EVALUATION OF THE BASIC INTEGRALS 

Now let us evaluate, for Ek<  E < E k +  1, the phase volume which 
corresponds to fluctuations above the k th  instanton vacuum: 

I(E, Ak) = f~ co/dH (28) 
k 

The Hamiltonian H is given by (12), and the form co equals 

( N --  1 ) /2  

09 = d(Po A (d~Opk, A d~o _pJi) 
k ' = l  

One could rewrite the last integral as follows: 

f/ f I(E, Ak)=~c(Ak) de dz 1~ dq~,6[H(q~,z)-E] (29) 
--oo PC • 

where 

H ( q ~ , z ) = ~ c o P q ) - e ( f 2 P - f 2 k ) b (  ~N) 2 
p~ +-pk 2 + ~  z + s + Ek 

z =  ~ ((ppq~ ~/2), e = (log q0pk-- log q~ pk)/2i 
P 

~(Ak) is + 1 or --1 and depends on the orientation of the cycle Ak. We 
integrate over q)p from ( -  ioo ) to ( + ioo) if f2p < Ok and from ( - oo ) to 



838 Rutkevieh 

(+  m) if Dp > s providing the positive definition of the quadratic form 
[H(~0, z ) -  Ek]. The intersection of the integration volume in (29) with 
the surface H - I [ E ]  forms a vanishing cycle Ak for Ek<E<Ek+I.  An 
elementary integration yields 

I(E, Ak) = 72(2 N+ 1N/b )l/2 SN_ 2(E -- Ek) (N- 3)/2 

X ( ~ c 2 0 - - ~ k ) - 1 / 2  l ~  (~(~k'--~'~k) - 1  ( 3 0 )  
k ' ~ k  

where SN-2 is the surface area of the unit (N-2)-sphere.  The sign of 
I(E, Ak) is chosen in such a way that agreement with the decomposition 
(27) is achieved [-see the relation (32) below]. 

Analytic continuation of (30) to the complex E plane completes the 
calculation of the instanton integral I(E, dk). Let us note its basic 
characteristics. 

1. When E>Ek the phase volume integral I(E, Ak) is purely 
imaginary. This is due to instability of the instanton solutions (o k which 
represent saddle points of the Hamiltonian (12). 

2. Fluctuations above various instanton vacua do not interact, in the 
sense that the integral I(E, Ak), being an entire function, is regular at Ek, 
points. 

3. The structure of the Hamiltonian H(~0, z) in (29) is the same as 
that of an ensemble of ( N -  1) uncoupled harmonic oscillators. Hence one 
can say that fluctuations above every instanton vacuum are Gaussian at all 
temperatures just as in the ideal gas. 

Let us rewrite the above relation as follows: 

I(E, A ) = f  df2A(O)[E-E(f2)](N-3)/2 (31) 
c(a) 21ti 

where 
( N -- 1 )/2 

A(f2)=rr(2N+IN/b)I/2SN_2(~o_O) 1/2 1-[ (g2k'--~) -1 
k ' = l  

E(s = -Nf22/2b, and C(Ak) is a small circle around the kth pole of the 
integrand. Expression (31) also defines integrals I(E,A+(M)), I(E, A ) ,  
and I(E, A~), provided the integration on the right-hand side is carried out 
over one of the arcs C(A+ (M)), C ( A  ), and C(A R) in the complex f2 plane 
shown in Fig. 4. From this figure we have 

M 

I(E, AR)=I(E,A )+ ~, I(E, Ak)+I(E,A+(M)) (32) 
k = l  
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Fig. 4. 

.- ~�9 

\,.. ] \,..           ] 

-~2(E) 

Integrat ion paths in the O. plane in (31 ). Here s = ( -- 2bE/N) 1/2 a <( O, and M = 2. 

in agreement with (27). It is not difficult to check that the branching of 
basic integrals specified by (31) conforms to the monodromy group (20). 

Let us note finally that the function I(E, A _ ) is analytic in the E plane 
with exclusion of the real semi-infinite interval (E , + oo). The develop- 
ment is valid when E lies in the indicated interval, 

Re I(E, A _ ) = I(E, AR) (33) 

iImI(E++_iO, A _ ) =  +_ I (E ,A+(M))O(E)+ ~ I(E, Ak) O(E-Ek)  (34) 
k = l  

where 

5. T H E R M O D Y N A M I C  A S Y M P T O T I C S  A N D  THE 
PHASE T R A N S I T I O N  

It is well known that the thermodynamic asymptotics of the integral 
(31) can be found by the saddle point method. Figure 5 shows for various 
energies the dependence of the logarithm of the absolute value of the 
integrand in (31) on O, 

S(E, 0)  = log IA(O)t + - ~  log[-E- E(O)] (35) 
z 

All the saddle points cok(E ) reside on the real axis and are interlaced with 
frequencies Ok: Coo(E) < 0o < Col(E) < O1 < .-.. The real phase volume 
I(E, AR) is determined by the contribution from the vicinity of the point 
Coo(E). 
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Fig. 5. 

IS(E,�9 

I 

E > E  c 

(a) (b) 

Dependence of the entropy (35) on f2 in the cases (a) E >  Ec and (b) E <  Ec. 

For the energy corresponding to the para phase the lowest saddle [-the 
one with the smallest height S(E, o90) ] appears at coo(E). With decreasing 
energy, the point Coo(E ) moves to the right and at E=Ec a phase 
transition occurs which results in the tight approach (or sticking, in the 
thermodynamic limit) of the point coo(E ) to the frequency f2o.(12) Further 
decrease of the energy leads to the situation where the point Col(E) 
becomes a saddle point with the smallest height S(E, Col), then Co2(E) (this 
situation is shown in Fig. 5b), etc. Finally, when E ~  0, CoM+ I(E) becomes 
such a point. 

Now let us show that the phase transition being considered is some- 
what analogous to the Kosterlitz-Thouless transition. The k number of the 
instanton solution of the spherical model corresponds to the number of 
decoupled vortex pairs. The entropy of fluctuations above the kth 
instanton vacuum at the energy E can be naturally defined as follows: 

Sk(E ) =log [I(E, Ak)l 

N 1 dp 
~-~log(E--Ek)--~f (--2n)dlog Is +coast. (36) 

It is obvious that the energy Ec is not a distinguished point for this func- 
tion, since fluctuations above the kth instanton vacuum "do not feel" the 
phase transition. However, at the point E c the relaton between instanton 
contributions with small k numbers changes (see Figs. 5a and 5b): 

OSk(E) (E< Ec) 
= (E = Ec) (37) 

k=0 L>  0 (E> Ec) 
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We can write approximately for the instanton entropy 

Sk(E) ~ S(E, co~(E) ) 

and point out that for small k the sequence S(E, codE)), S(E, co2(E)) ..... 
S(E, cok(E)) .... is decreasing or increasing according as the energy E is less 
or greater than Ec (see Figs. 5a and 5b). One can also arrive at (37) by 
directly differentiating (36): 

~Sk(E) O~kk ~ N2f2~ l ~-gL-~_~d ' } 
~=o = ~=o t2b(E-Eo)~-2  j ~z~) ( ~ " -  ~2~ 

The sign of the expression in curly brackets changes at the energy E c of the 
phase transition. 

The result (37) agrees exactly with the Kosterlitz-Thouless criterion. If 
E>Ec, increasing of k in the vicinity of k=O (appearance of vortices) 
increases the system entropy and thus it is thermodynamically favorable, s 
When E<Ec the instanton configurations are thermodynamically not 
favorable and a ferromagnetic basic state is realized. Ironically, an 
imaginary phase volume corresponds to instantons. They contribute to the 
imaginary part of the analytical function I(E, d ), the real part of which 
is a real phase volume I(E, dR) [see (33), (34)]. 

It is interesting to note that due to the complexification of the 
Hamiltonian the possibility arises of avoiding the transition into the 
ferromagnetic phase during the cooling of the system. Indeed, let the (real) 
system energy decrease from the positive value E(0) to zero, 

E=E(t) (0~<t<l )  

E(0)>Ec, E(1)=0 

Here co(t)= coo(E(t)), which specifies the thermodynamic asymptotics of 
the real phase volume I(E(t), d~), moves to the right, approaching the s o 
frequency. In order to avoid the approach and merging of the points co(t) 
and f2o (and, hence, the phase transition), let us shift the point s 0 = Oo(t) 
to the right in the lower half-plane, move it in the clockwise sense around 
the point - s  1/2 [the initial point of the integration 
contour C(AR)], and then return it to the initial value at a certain value 
tm: O0(tl)=a. Simultaneously, let us continue the decrease of the energy 
E(t) in such a way that E( t l )<  Ec and during the deformation process the 
saddle point in co(t) is restricted to be the lowest one. As a result, the path 

s We say the entropy instead of the free energy because we have fixed the energy of the system, 

but not its temperature. 
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of integration C(A(tl) ) passes between the points ~20 and ~21. Therefore, 
the deformation in 0 ~< t ~< tl yields 

E(O)~ E(tl) 

~oo(E(O)) --* O~l(E(tl) ) 

A R ~ A R - A _  

C(AR) -~ C(AR)- C(A ) 

I(E(O), AR)-'I(E(tl),  A R - A  ) 

where E(O)>E c, E( t l )<E c. By decreasing the energy to zero for t=  1 
and avoiding collisions of the saddle point o(t) with frequencies 
g21, 0 2 ..... ~2M, as was done with g20, we arrive at the desired deformation 
A(t): 

A(O) = AR, A(t) tZ~ A +(M) 

and the asymptotics of I(E(t), A(t)) over the whole deformation path is 
defined by the vicinity of the "paramagnetic" point ~o(t) with the smallest 
height of a saddle. 

6. C O N C L U S I O N S  

The main result of the paper is the demonstration of the usefulness of 
the concepts and methods of complex singularity theory for critical 
phenomena physics, using the spherical model as an example. The state- 
ment about the decomposition of the phase volume into contributions of 
the basic state and instanton configurations [relations (27), (32)] is 
formulated most naturally in terms of the Picard-Lefschetz theory. It is 
shown that fluctuations above instanton vacua do not interact with each 
other and form an ideal gas. This behavior is closely associated with the 
trivial action of the monodromy group on the corresponding vanishing 
cycles. It is also shown that a phase transition takes place in a spherical 
model in accordance with the Kosterlitz-Thouless criterion: above the 
temperature of the transition, instanton configurations become thermo- 
dynamically favorable. 

It will be intriguing to find out which results obtained for the spherical 
model are applicable to more complex and realistic situations. In this 
connection, together with the Kosterlith-Thouless criterion, the Gaussian 
character of fluctuations above the instanton vacuum--one more example 
of linear behavior in a nonlinear system--is of the greatest interest. 
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Certainly, this result applies only to the spherical model. Thus, it does 
not take place in the Toda chain, whose monodromy group is given in 
Appendix C. Nevertheless, in more complex systems the thermodynamic 
characteristics corresponding to the fluctuations above the instanton 
vacuum are perhaps less singular in the vicinity of the phase transition than 
the corresponding observable quantities. 

A P P E N D I X  A 

The function 

ax  2 bx  4 N 

H=Z-+-8-+ Z y~ (A.I) 
n=2 

is invariant with respect to the reflection x - - , - x ,  which leads to a 
degenerate singularity. Two critical points lie on the surface of energy 
E =  - a 2 / 2 b  and one is located on the surface H 2[0]. For a > 0 ,  b > 0 ,  the 
locations of the critical values are shown in Fig. 6a. Two cycles A ~ and A 2 
(nonintersecting spheres) vanish on the surface H - l I E ]  and one cycle 
A+ vanishes on H-~[0] .  Transforming these cycles along the arcs shown 
in Fig. 6a, one obtains the basis A+, A~,  A 2_ on the regular surface 
H t iE] .  The monodromy group representation in this basis corresponds 
to the Dynkin diagram shown in Fig. 6b. (1~ Here A + and A_ = A 1 + A 2_ 
are invariant with respect to the reflection cycles. The action of the 
monodromy group on them in N =  3(rood 4) is described by the relations 

h~. (3_)  = - 3 _ ,  

h ~ ( A _ ) = A _  - 2 3 + ,  

h T _ ( A + ) = 3 + - A _  

hy+ (a + ) = - A  + 
(A.2) 

A P P E N D I X  B 

The function of the form 

b 
H = a(x  2 + y2) + 2 (x 2 

E_ ,5+ E 

Fig. 6. 

N 

+ y2)~ + F~ zo 
n = 3  

zxt A+ /xt 

(a) (b) 

(a) Constructing the basis of invariant vanishing cycles of H = �89 ax2+ glbx4 -- x~n=2 ~- V'N Y~ 

for a > 0 and (b) the corresponding Dynkin diagram. 
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where a < 0 ,  b > 0 ,  and N =  3(mod4) ,  is invariant with respect to the 
rotations 

(x, y, z) -* (x cos cp + y sin ~0, - x  sin ~# + y cos ~o, z) 

It has a Morse point at zero with the critical value E+ = 0 and a critical 
curve z = 0 ,  (xZ+y2)  = -a /b ,  with the critical value E ~ = - a Z / 2 b .  The 
small deformation 

H--. ffI = H -  hx 

with smal l  positive h removes the degeneracy: the critical circle is broken 
into two Morse points with the energies El,, E 2. As a result, we have a 
Morse function and are under the conditions of the Picard-Lefschetz 
theory. A basis on the surface H - l I E ] ,  E~ < E < 0 is formed by the cycles 
All, A~, A+(1) (notations are the same as in Section 4) vanishing on the 
surfaces of energies El ,  E~, E+ as the result of deformation along the arcs 
shown in Fig. 7a. The intersection numbers of these cycles correspond to 
the Dynkin diagram shown in Fig. 7b. It can be easily found by the 
methods described in Section 4 of ref. 10, as obtained there in Fig. 32 and 
33. In the limit h -*0 ,  the cycles AI=A~I+A2t and A+(1) are invariant, 
which in E1 < E < 0 can be described by the following relations: 

2 2 b 2 N a(x + y  )+-~(x  +y2)2+ Z z ] = E  (B.2) 
n = 3  

A~: I m x = I m  y = I m z = 0  

A+(1): I m x = I m  y = R e z = O  

' '  1 t ~ // 5 ' ~ f ;  ' E E+ 

/ 

(a) (b) 

Fig. 7. (a) Constructing the basis of vanishing cycles of the function 
H = a(x 2 + y2) + �89 2 + y2)2 4- ~f',N n_ 3 z2n - -  hx on the H-  1 [El surface for smul positive h in 
the case a<0, b>0. Elementary loops 7~1, y2, and y+(1) corresponding to arcs ul~, u 2, and 
u+ (1) are indicated. (b) The Dynkin diagram of the function under consideration. 
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The cycle A+(1) has the topology of a sphere S u-1 and for E ~ 0  it 
degenerates into a point at the origin. The cycle A I has the topology of 
S N -  2x 81 and for Eo--* E1 it degenerates into a real circle 

(X 2 -4- y 2 )  = -a/b,  Im x = Im y = z = 0 

In the h ---, 0 limit the points Ell and E 2 merge and therefore only two basic 
loops 7+(1) and 71 =72711 (see Fig. 7a) remain in the E plane. Hence the 
monodromy group acts on invariant cycles as follows: 

hT~(Aj) = d l ,  h~(d + (1)) = d + ( 1 ) + d  I 
(B.3) 

h~+. ) (z l )=z l ,  h,+(1)(z +(1)) = - J + ( 1 )  

where h.~ = hv]h~. 
Thus, the monodromy group is trivially acting on all. This permits us 

to assume that the corresponding integral I(E, J1) is analytical at points 
El,  E+.  Let us verify this fact. If a < 0, E1 < E <  0, we have 

+co N 

I(E, A1)=f ~ (-o/dg--f dxdy H dZn(~[H(x,Y,z)-E] 
1 - - ~  n = 3  

= ~dt  dz, 6 a t + - ~ - +  ~ z , -  
--oo --co n = 3  n = 3  

= ~ d6t  l-I dz, 6 (602+ z , Z - 2 - b - E  
--co --av n = 3  n ~ 3  

= (2/b)l/2rcSu_ 2 ( E -  Et) (u 3~/2 (B.4) 

where fit = t + a/b. By analytic continuation of (B.4) to the whole complex 
plane E we obtain, in accordance with (B.3), a single-valued analytical 
function. 

From (B.3) by continuous deformation and changing the basis, one 
can derive the monodromy group representation relating to the case of 
a > 0, which is useful in Section 3. This representation corresponds to the 

I 

E~ E. E 

Fig.  8. C o n s t r u c t i n g  the  bas is  of  i n v a r i a n t  v a n i s h i n g  cycles of  H =  a(x 2 +y2) + 
lb(~ + y~)~ + ZL~ ~.~ for a > o. 
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arcs u+(0) and ul shown in Fig. 8 and is described by the following, rela- 
tions, which are analogous to (B.3): 

h~,(A 1) = 31, 

h7+(o)(31) = A1, 

h~,(A + (0))  = A + (0) + 31 

h~+(o)(3 + (0) )  = - 4  + (0) 
(B.5) 

A P P E N D I X  C 

In this Appendix we present the monodromy group of the one-dimen- 
sional closed Toda chain. Its Hamiltonian has the form 

N M 

H(X,, . . . ,XN, y l , . . . , y M ) =  ~ exp(x,)+ ~ y~ (C.1) 
n = l  m = l  

with the restriction 
N 

x n = L  
n ~ l  

Here x, is the distance between neighboring chain atoms, and L is the 
chain length. 

The critical values Ek of the Hamiltonian (C. 1) are given by 

Ek = N exp [ ( L -  2rcik)/N] 

where k = 1 ..... N. Every critical surface H - I [ E k ]  contains an infinite set of 
critical points which are nondegenerate. The coordinates of two points x 
and x' from such a set are connected by the simple relation 

x'n - xn = 2z~iln 

where ~ N  In = 0, and 1, are integers. We will not distinguish such points ~t=l  

and identify corresponding vanishing cycles. 
By joining with straight lines the origin of the E plane with the critical 

values Ek, we obtain the basis of vanishing cycles A 1 ,  A 2 ..... A N on 
H- l [0 ] .  For even M and ( M + N ) = 0 ( m o d 4 )  a monodromy group 
representation with respect to this basis is described by 

where 

hrz(Ak) = 3 k + C~,kA~, 

- 2  

Ck,k --- N ! 

-- i k - k ' l !  ( N - I k - k ' h ) !  

(k=k ' )  

( k C k ' )  

(C.2) 
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